ČESKÁ SPOLEČNOST PRO JAKOST
Novotného lávka 5, 116 68 Praha 1

BEZ SPOLEHLIVOSTI
NENÍ JAKOSTI

Materiály z 33. setkání
odborné skupiny pro spolehlivost

Praha, listopad 2008
OBSAH:

SPOLEHLIVOST A JAKOST
Ing. Libor Obruča

PŘEHLED TECHNICKÝCH NOREM Z OBLASTI SPOLEHLIVOSTI
RNDr. Jaroslav Matějček, CSc

METODIKA ZJEDNODUŠENÉHO INTERVALOVÉHO ODHADU PARAMETRU MTBF - UKAZATELE BEZPORUCHOVOSTI
Ing. Libor Obruča
Spolehlivost a jakost

Ing. Libor Obruča

1. Úvod

Touto přednáškou bych vám chtěl sdělit, že vyslovovaná nebo mlčky předpokládaná tvrzení některých pracovníků, zabývajících se problematikou zajišťování jakosti/kvality vyráběných, vytvářených nebo prodávaných produktů 1, že kvalitní produkt je současně také spolehlivým produktem, jsou jen částečně pravdivá. Proč tato tvrzení (mohli bychom je označit za myty) vznikla?

Já k takovým pracovníkům také patřím s tím rozdílem, že o naznačeném mytí jsem měl jasnější představy, které vycházely z reality mých praktických zkušeností, které jsem postupně nabyl v mých dřívějších profesích. Ty se týkaly teorii a aplikací spolehlivosti a obnovy v souvislosti s návrhem a vývojem elektronického systému (převážně počítačů a jejich komponent) se zadanými parametry spolehlivosti. Později jsem poznal problematiku managementu kvality, jako auditor těchto systémů.

Citované normy ISO, přesněji „Guruové“ norem ISO, zřejmě při specifikování vlastností kvalitních produktů vůbec nepovažovali vlastnosti nazývané jejich spolehlivostí za podstatné. 2 Zdálo se logicke tvrzení, že kvalitní produkty vznikající, nápř. v podmínkách respektujících zásady stanovené systémem managementu kvality QMS (Systému Managementu Kvality), by měly být automaticky také spolehlivými produkty, bohužel ne vždy při jejich používání platí.

Protože tato přednáška není kurzem spolehlivosti prozatím, abyste řádu výrazů a pojmů, které budou použity, brali pouze na vědomí, že existuji.

2. Co se rozumí pojmem „spolehlivý produkt“

Mohly bychom tedy stručně definovat spolehlivost produktu, jako jeho kvalitu zachování v časovém období jeho používání, resp. obnovovanou v případě poruch používání tohoto produktu.

Dále je dobře si zapamatovat, že kvalita (jakost) produktu bez definovaných vlastností, kterým se říká spolehlivost je JEN PODMÍNKOU NUTNOU, ALE NE DOSTAČUJÍCÍ. Proč tomu tak je? Tvrdí, že je produkt současně spolehlivým produktem není podloženo prokazatelným důkazem. Jestliže v technických specifikacích produktu nejsou stanoveny odpovídající ukazatele spolehlivosti, stejně tak, jako jsou v nich uvedeny ukazatele a charakteristiky, kterými lze prokazatelně dokazovat, že daný produkt má odpovídající řídu kvality (jakosti), nelze přece tvrdit, že je současně také spolehlivým produktem. To je přímo proti základním pravidlům QMS. Proto také platí, že BEZ SPOLEHLIVOSTI NENÍ JAKOSTI...“.

1 Produkt – je výsledkem činnosti v procesu a zahrnuje výrobky (hardware), služby (obchodní činnosti, kooperace, doklady související s logistikou, výrobou, montáži, zkoušení, s kontrolními činnostmi, reklamací a procesy, nápravnými opatřeními, opravě a motivací, servisní údržbu, náhradní díly s dopravou atp.), software (počítačový software-programové vybavení, dokumentace výkresové i popisné, návody, návody pro použití, pokyny pro údržbu apod.), zpracován materiály (urovnání apod.). Specifickým produktem procesu je projekt, který je označován jako jedinečný proces sestávající z řady koordinovaných a řízených činností, zahrnujících obvykle více či méně dřívě uvedené produkty a činnosti.

Zminěnou dostačující podmínkou jsou, mj. dvě následující skutečnosti.

a) Věďte jak je spolehlivost produktu oficiálně definována normou, abychom mohli prohlašovat, že je nějaký produkt spolehlivým nebo nespoléhlivým, abychom věděli co můžeme očekávat. Abychom věděli, jaké jsou ony dílčí vlastnosti, které spolehlivost (dependability) produktu určují?

b) Jak bylo již zdůrazněno, v technických specifikacích které definují kvalitní produkt obvykle nemáme stanoveny odpovídající specifikace spolehlivosti.

Požadavky na uspokojující spolehlivost produktu mohou být buď
A) stanoveny (požadovány) záklazníkem v zadání nebo
B) určovány tržními souvislostmi kdy zákazník pasivně očekává, že produkt bude příměřeně bezporuchový, tzn. přesněji, že k poruše funkce produktu sice může dojít, ale že pravděpodobnost že se to nestane hned, resp. brzy po začátku jeho používání je dostatečně vysoká. Navíc, dojde-li přece jen k jeho poruše, že bude včas zajištěna náprava aniž bychom museli nefunkčnost takového produktu složité reklamovat a domáhát se nápravy. Je samozřejmě důležité, že se nějaká porucha znovu, a zejména ne často, bude opakovat.

Mnoho uživatelů, ale často i manažerů, rozumí pod pojmem spolehlivost produktu, především jen jeho bezporuchovost (resp. poruchovost), případně jeho životnost. To je jen částečně správné tvrzení. Do značné míry to napfl platit pro tzv. neoprávené produkty. Žároky, drobné součástky a jednoduché komponenty systému apod. I v těchto případech existuje zmíněná doplňková vlastnost a tou je životnost (technická doba života nebo použití).

Obecně bývá nutné do pojmu „spolehlivý produkt“ zahrnout i další dílčí vlastnosti definující spolehlivost produktu.

Jaké jsou tyto dílčí vlastnosti definující spolehlivost produktu:

2.1 SPOLEHLIVOST (DEPENDABILITY) je souhrnnou vlastností produktu tvořená jeho dílčími spolehlivostními vlastnostmi, jakými jsou

2.1.1 bezporuchovost (reliability),

2.1.2 udržovatelnost (maintainability),

2.1.3 pohotovost (availability),

2.1.4 životnost, resp. užitný život (durability, useful lifetime),

2.1.5 zajištěnost údržby (maintenance support performance),

2.1.6 bezpečnostní rizika (safety risks)

apod. podle druhu a použití daného produktu.

Je nutné zdůraznět, že zdáleka ne vždy je ve specifikacích produktu nutné deklarovat všechny vyše uvedené vlastnosti. Záleží především na tom jakému účelu a použití je takový produkt určen a zda jde o produkt typu součástky (jednoduché služby, jednoduchého softwaru apod.) nebo složité systém skládající se z více podsystémů a součástek, jestliže zminěnou pouze krajní extrémy jeho složitosti.

Velmi často stačí opravdu jen ony predstavy, že spolehlivost produktu, tj. jeho bezporuchovost, životnost a navíc nepřehlédění udržovatelnost apod. určují ony zmíněné vlastnosti.

Jednotlivé dílčí vlastnosti spolehlivosti jsou kvantifikovány (vyčíslovány) již zmíněnými ukazatelem spolehlivosti. Ty je možné ověřovat (verifikovat), tj. posuzovat, zda je produkt shodný, se zadaním a zejména validovat (potvrzit platnost), tj. že produkt, který ač odpovídá zadaní je především vhodný pro zamýšlené použití uživateli. Validace je proces, který výraznou měrou přispívá ke zvýšování spolehlivosti daného produktu. Ověřování spolehlivostních ukazatelů je len složitější a obvykle trvají delší dobu, než ověřování ukazatelů kvality. Nejen z toho důvodu je součástí tzv. „pěče“ o spolehlivost, tj. managementu spolehlivosti i nutnost zavedení tzv. zvláštních procesů (o nich se zmíníme později).

Základním požadavkem pro dosažení potřebné kvality produktu včetně jeho spolehlivosti vyčísla z předpokladu nekompromisního dodržení požadavků systému managementu kvality (QMS), která je podmínkou nutnou pro to, aby systém managementu spolehlivosti (DMS – Dependability Management System), mohl být úspěšně realizován, aby produkt byl skutečně kvalitní.
2.2 Zvýšené nároky na návrh a realizaci kvalitního a spolehlivého produktu

Nároky na návrh produktů z hlediska jejich spolehlivostních vlastností se mohou velmi lišit jedná-li se o návrh systémů ve svornání s návrhem podsystémů nebo komponent takového systému.

Dosazení požadované nebo přiměřené spolehlivosti produktu je vždy ekonomicky nákladnější než náklady na vytvoření „jen“ kvalitního produktu. Tato skutečnost producenty musí zajistit. Musí se snažit najít optimum, například mezi náklady na návrh, vývoj a výrobu a mezi náklady na provoz produktu v závislosti na celkových nákladech a dosažitelné bezporuchovosti. Tento zjištění zahrnuje období tzv. životního cyklu produktu. (viz dále odstavec 4.2.) Požadavky na dosazení určitých spolehlivostních vlastností produktu jsou nejčastěji určovány požadovanou mírou bezpečnostních rizik při používání takových produktů.

Zajištění Systému Managementu Spolehlivosti je zásadně závislé na informacích. Informacích vyplývajících ze systému záznamů o průběžných procesech a zejména záznamů o spolehlivosti pro provoz, zkoušek apod. a následném vyhodnocování těchto záznamů. Bez následných analýz příčin a návrch zjišťovaných nesohod a nedostatků jsou záznamy a náklady na ně vynaložené ztracenou investicí.

Tyto záznamy, mj. jiné slouží také pro již zmíněné validace, nejen při vlastním návrhu, ze zkoušek spolehlivosti a zejména z následných provozů produktů u uživatelů. Jak bylo dříve konstato- váno, proces validace je jednou ze nejúčinnějších metod umožňujících postupné zvýšování spolehlivosti produktu.

U technologických procesů, např. sváření, jsou provedeny pečlivé zkoušky a zjišťován jejich výsledek nedestruktivními i destruktními zkušebními metodami. Tyto metody ověřování výsledků takového procesu není možné provádět v reálném čase výrobního procesu. Cely proces sváření a jednotlivé postupy jsou v něm popsány technologickými postupy a požadavky od stanovení požadavků na prokazatelnou autorizovanou kvalifikaci a dovednosti konkrétních svářců, jaké mají k dispozici výrobní prostředky, kontrolní zařízení, metrologické zabezpečení a jak průběžnou kontrolu provádějí apod. Jde o specifické procesy, které ovlivňují výslednou spolehlivost produktu v důsledku technologických a aplikačních omezení.

Těmito opatřeními je snížováno riziko vzniku vadných svárcenců.

Podobně např. zvážené procesy výrobní montáži vyžaduje důslednost prokazatelného splnění kvalifikací požadavků a výcvik pracovníků, zúčastňujících se v takovém procesu případně jejich akreditaci autorizovanou osobou (jako např. zvážené proces technologie sváření pro drážní použití), prokazatelné zajištění prováděné údržby a seřízení pracovních prostředků, metrologického zabezpečení měřidel atp. Výpracování požadavků na zajištění nákladu komponent montáže včetně kooperacích procesů a kontroly jejich splnění atd.

Systémy (produktu) používané v letecké, železniční, lodní, automobilové apod. dopravě nebo v jaderné technice, energetice, zdravotnictví, chemických provozech, astronautice, v průmyslu, v systémech řídicích in-line produkcí (mj. válcovací stolice) apod., to jsou příklady použití produktů, které jsou i při respektování zásad managementu řízení kvality (QMS) respektuována i hlediska spolehlivosti, vyžadovaná systémem managementu spolehlivosti (DMS).

Zmíněná odvětví, problematiku spolehlivosti řeší a tradičně ji respektuji. V této přednášce nebudeme tato odvětví sledovat, pro ně to není nic nového a vědí velmi dobře o co jde. Naší pozornost zaměříme, odvětví, která až dosud nemusela o zajištění určité úrovni spolehlivosti pečovat. Stačila ji produkce tzv. kvalitních produktů bez požadavků na spolehlivost. Pro jiznodušení si je, ne je zcela přesně označit jako tzv. „spotřební produkty“. ⁷

⁴ Validace - je proces potvrzování platností, že realizovaný produkt splňuje požadavky zadajícího (bylo potvrzeno verifikací - ověřením) je součástí při požadované vhodnosti pro zmíněné použití.

⁵ které byly z prvních návrhů ČSN EN ISO 9001:1993 vykresnány.

⁶ Vz. § 7 I. písm. c) v normě ČSN EN 60300-1 Management spolehlivosti - Část 1: Systémy managementu spolehlivosti

⁷ Oficiální definice „spotřebního produktu“ zaznamená. Rozumí se jimi někdy i produkty konkrétně vyrobené pro účely prodeje, běžně dostupné na pulzech obchodů (COTS - Commercial Off The Shelf), náhradní díly atp.
3. Spolehlivost tzv. „spotřebních produktů“

Znovu opakuji a připomínám, že jde o produkty, které jsou v našich podmínkách z hledisek jejich spolehlivosti „ošetřeny“ jednoduše tím, že zákazník, uživatel takových produktů má, již zmíněný zákonný nárok (např. Obchodní zákoník).

Každý produkt může mít poruchu v průběhu jeho používání. Musí být buď opraven nebo vyměněn za bezvadný nebo vrácen. Záleží na tom, jak často se taková událost stane nebo, jestli jde nem o vyjimečný případ a navíc se tato událost znovu s vysokou pravděpodobností nemá opakovat. Zjevná ne v kritických situacích při použití takového produktu. V takových případech také záleží na tom jak je poruchová událost rychle odstraněna, tzn. jaké jsou nároky na pohotovost produktu k použití a na zajištění údržby a následnou opravitelnost nebo udržovatelnost takového produktu.

Produkty, které jsou poruchové a navíc přitom jsou vydávány za kvalitní nebo velmi kvalitní a obvykle tedy i dražší postupně zájem o ně na trhu klesá a jsou zákazníky odmitány. Obrat výrobců nebo dealera takových produktů na trhu rovněž klesá. Dochází k tzv. ztrátě „dodržení jména producenta, ztráta důvěry“, která se jen obtížně znovu získává.

4. Ekonomické souvislosti spolehlivosti a lakosti

Realizace spolehlivých, kvalitních produktů je vždy nákladnější, než „jen“ produkty, které ač jsou vydávány za kvalitní nebo dokonce vysoce kvalitní produkty nejvýšší jakostní třídy, nemají odpovídajícím způsobem „ošetřeny“ své spolehlivostní vlastnosti.

Dále jsou zmiňeny příčiny, které ve větši či menší míře zvýšují náklady na produkci i provozování spolehlivých produktů ve srovnání s obvyklými produkčními postupy tzv. kvalitních produktů.

4.1 Pravidla a požadavky týkající se tzv. systému managementu jakosti (QMS) je nutné důsledně dodržovat a navíc je nutné dodržovat také požadavky na systém managementu spolehlivosti (DMS), který rozšiřuje pravidla a procesy vyžadované systémem managementu kvality (QMS) o další požadavky a procesy.

Zjednodušeně si zopakuji, že Systém Managementu Spolehlivosti (DMS) je do značné míry totožný s požadavky a pravidly systému managementu jakosti (QMS). Doplňeny musí být především o zavedení specifikace spolehlivosti do obchodních smluv, do požadavků na logistiku a kooperaci. Dále důsledným zavedením tzv. „speciálních, resp. zvláštních procesů“ na kritické procesy. Zavedení zkoušek spolehlivosti a důsledné provádění validačních procesů. Zjednodušeně se seznámíme jaké nároky má DMS na jednotlivé oblasti v procesu vytváření jakostního a tedy i spolehlivého produktu.

4.1.1 Obchodní fáze v říjnu, v průběhu realizace i zakončení akce

Projednávání specifikací požadavků produktu na spolehlivost se zákazníkem nebo s požadavky trhu. Musí být zvážena ekonomická bilance a rizika související s vytvořením předpokladů pro realizaci takového produktu. V DSM jsou zvýšené nároky na tzv. „úvodní přezkoumání zadání“, ve srovnání s praxí prováděnou často v QMS. Pečlivé zvážení požadavků zákaznika nebo trhu na spolehlivost budoucího produktu. Využití již zmíněné normy ČSN EN 60300-3-4:2008 (01 0644)

Provedení optimalizace nákladů na návrh, realizaci, nákladů na zajištění údržby apod. v závislosti na požadovaných spolehlivostních vlastnostech budoucího produktu. Zajištění sběru dat o spolehlivosti provozu existujících obdobných produktů a nově projektovaného produktu včetně dat z prováděných spolehlivostních zkoušek pro ověřování výsledků. Mj. rovněž pro provádění důsledných validací, pro procesy zlepšování procesů a provozu, odpovědnost, resp. použitelnost nového produktu.

8 Viz v poznámkách pod č. 3 PŘEHLED TECHNICKÝCH NOBEM Z OBLASTI SPOLÉHLIVOSTI, RNDr. Jaroslav Matušek, ČS.
Viz příklad přiloženého optimalizačního grafu na obr. 1, při hledání optimální přijatelné hodnoty bezporuchovosti existujícího podobného produktu (protože je nutné např. znát náklady na údržbu za období životního cyklu, které u nového produktu můžeme pouze odhadovat jaké lze očekávat) pro odhad hodnoty optimální bezporuchovosti nově navrženého produktu.

Jsou to mj. požadavky v jednotlivých návrhových fázích procesu, které musí být postupně zpřesňovány po prováděných validacích.

4.1.2 Návrhová fáze

4.1.2.1 volba a návrh architektury budoucího produktu, které jsou silně závislé na tom, jestli produkt je prvkem nebo je součástí (komponentou) větší části budoucího systému apod.

4.1.2.2 požadavky na logistiku – tj. nároky na specifikaci objednávek pro nákup potřebných komponent budoucího produktu a na kooperace v nichž jsou podle potřeby rovněž požadavky na spolehlivost; požadavky na logistické zabezpečení zajištěnosti údržby budoucího produktu (např. nutnost vybudování konsignačních skladů, náhradních dílů apd.)

4.1.2.3 hlediska a realizační potřeby zajištěnosti údržby budoucího produktu související s vývojem odborných pracovníků údržby, servisem v terénu, potřebou náhradních dílů, dopravní zajištěnosti apd.; nároky na expedici produktu k zákazníkovi

4.1.2.4 požadavky na zajištění tzv. „zvláštních (speciálních) procesů“, např. náklady na vývoj a certifikaci pracovníků realizujících příslušné důležité a kritické procesy včetně zvýšených nákladů na logistiku (zajištění odpovídající kvality, často včetně požadovaných záruk na spolehlivost nakupovaných a používaných materiálů a komponent produktu, jejich skladování, požadavků na kvalitu kooperací apd.)

4.1.2.5 zvážení nákladů na zvýšené nároky pro ověřování (verifikaci) kontrolami a zkoušením (často i v meznych provozních podmínkách, náklady na zkoušky prováděné ve specializovaných, akreditovaných zkoušebnách nebo zkouškami autorizovanou osobou atd.), zda jsou splněny projektované parametry produktu v souladu se zadáním; zejména náklady související se spolehlivostními zkouškami a prováděním validací, kterými se potvrzuje platnost projektových závazků v praktické použitelnosti produktu.

4.1.2.6 náklady na případném nutnost investovat do zkušebních a kontrolních přístrojů, případně do plateb za externí zkušebně, do realizačních kontrolních procesů a dalších nákladů souvisejících s metrologickým zabezpečením, zejména „zvláštních procesů“

4.1.2.7 zvážení nákladů na provádění validací návrhu (např. nutnosti komisionelního provádění těchto validací za účastí odborníků zákazníka apd.), realizaci funkčních a zkušebních vzorků produktu, ověřování technologie, realizace prototypu nebo pilotní série apd.

4.1.2.8 odhady nákladů na tzv. „životní cyklus produktu“, kde je nutné zvažovat nově i náklady na zajištění požadované ekologické úrovně po celé období života produktu.

4.1.2.9 zvážení případných nákladů souvisejících s nutností investovat do nových technologií – např. není možné zajistit potřebnou úroveň kooperační činnosti, pak je nutné zvážit možnost zavedení vlastní technologie, např. použitím indukčního pájení apd.

4.1.3 Logistická fáze

4.1.3.1 nakupování výrobních komponent a služeb (např. kooperací) musí být realizováno jen organizači, které byly námi vyhodnoceny, jako důvěryhodné, schopné poskytovat nám požadovanou kvalitu a často požadovaných spolehlivostních vlastností předmětů svých dodávek, resp. poskytovaných služeb a které periodicky vyhodnocujeme a provádíme příslušná nápravná opatření

4.1.3.2 zabezpečení požadavků týkajících se logistiky zmíněných v bodě 4.1.2.2., tj. např. zajištěnosti údržby, zvýšené náklady na uskladení produktů určených pro režim tzv. „zvláštních procesů“ apod.

4.1.4 Realizační fáze (výroba, návrh službo, sw apod.)

4.1.4.1 (průběhy procesu v režimu tzv. „zvláštních procesů“, náklady související s environmentálním „ošetřením“, vypracování technologických postupů, postupů pro údržbu)

4.1.5 Kontroly a zkoušení

4.1.5.1 (spolehlivost zkoušky a validace opět v souvislosti se zajištěním tzv. „zvláštních procesů“, vypracování zkušebních postupů apd.)

4.1.6 Předání produktu zákazníkovi včetně expedice
4.2. Závěr k ekonomickým hlediskům systému managementu spolehlivosti (DMS)

Je evidentní, že zdáleka ne všechny zmíněné aspekty zajištění spolehlivého produktu managementem spolehlivosti (DMS) budou nutné. Závisí to především na tom jaké jsou klady požadovány na spolehlivost produktu a výměny (závazníkem „jenom“ třhem), o jaké jde produkty (komponenta, systém apod.) a do jaké míry bylo v jednotlivých organizacích až dosud dodržování zásad stanovených v systému managementu kvality (QMS) formální, nedůsledné a podchovávající, především vrcholovým managementem organizace.

Vzhledem k tomu, že dozaření pozadované úrovně spolehlivosti (zde především bezporuchovost) znamená vynaložení mnohdy nemalých nákladů, je v zájmu producenta, aby se zajimal o optimalizaci dozařených, resp. dosažitelných hodnot bezporuchovosti a aby tak, podle možnosti korigoval eventuálně pozadovány zákazníkem při sjednávání technické specifikace nového produktu, resp. hledal vhodnou architekturu dodávaného produktu (např. zavedení vhodného záložování prvů, bloků nebo celého systému, systému zajištění údržby apod).

Na dálé uvedeném obrázku je zjednodušené grafické řešení optimalizace ekonomicky přiznivě hodnoty navrhované úrovně bezporuchovosti daného systému s ohledem hodnoty souvisejících nákladů.

5. Závěr

Cílem předaných informací nebylo vyškořлит Vás na odborníky spolehlivosti, ale cílem mělo být úvodní seznámení pracovníků, které se ve své praxi dosud nemuseli zabývat problematikou spolehlivosti.
vostí produktů. Pracovníků, kteří se až dosud mohli zabývat „pouze“ vytvořením kvalitních produktů o jejichž spolehlivost se v přeneseném slova smyslu staral stát svými legislativními opatřeními”.

Snažili jsme se Vám, pro první přiblížení k problematice spolehlivosti, zjednodušeným způsobem, alespoň trochu objasnit některé základní pojmy a souvislosti. Zvýšit Vaši gramotnost týkající se dosud všelijak nepřesně interpretovaného pojmé „spolehlivost“.

Chtěli jsme zdůraznit, že systém managementu spolehlivosti vyžaduje nejen neformální a důsledné plnění požadavků QMS (systému managementu jakosti-kvality), ale také něco navíc což souvisí tzv. Systémem Managementu Spolehlivosti (DMS), který je naznačen ve 4. odstavci.

Cílem by mělo být, že i Vy byste měli vnímat problematiku spolehlivosti, pokud Vás k tomu budou nutit požadavky ve Vašem oboru nebo Vás k tomu budou nutit požadavky trhu. Zákazník ten kdo si, často za drahý peníz koupí kvalitní produkt a těšil se, že ho budete používat nebo ho využívat, musí a má právo radostně reklamovat jeho nefunkci.

Základní informace týkající se požadavků na spolehlivost byste měli umět vnímat a další detailnější problematiku zajišťování požadavků na spolehlivost, alespoň pro začátek, přenechat v kooperaci externím specialistům zabývajícím se spolehlivostí profesně. S nimi byste měli úzce spolupracovat a např. jim zajišťovat potřebná data apod. Tím byste získávali další praxi v oboru spolehlivosti a postupně se osamostatňovali abyste mohli spolupracovat s externími „spolehlivostními“ specialisty. Pokud budete nuceni osudovými okolnostmi si tuto profesi ve své organizaci vytvoret

V následné přednášce se dovít, že existuje velký soubor norem, které se zabývají problematikou spolehlivosti.

V závěrečné přednášce po přehledu norem je naznačen konkrétní návod postupu provádění předběžných intervalových odhadů parametru ukazatele bezporuchovosti, kterým je MTBF (Mean operating Time Before Failures) - střední provozní doba mezi poruchami.
PŘEHLED TECHNICKÝCH NOREM Z OBLASTI SPOLEHLIVOSTI

RNDr. Jaroslav Matějček, CSc., Praha
(Stav ke dni 31. 10. 2008)

Oborem spolehlivosti se zabývá přibližně 50 technických norem zavedených do ČSN. Vesměs se jedná o normy vypracované technickou komisí IEC TC 56 Spolehlivost, které jsou zpravidla paralelním hlasováním schváleny CENELEC a jakožto průřezové normy jsou zaváděny do ČSN překladem.

Tyto normy lze podle svého předmětu rozdělit do několika skupin:
− názvoslovné normy spolehlivosti;
− normy pro management spolehlivosti;
− pokyny k udržovatelnosti zařízení;
− normy pro ověřování a zjišťování dosažených hodnot ukazatelů spolehlivosti;
− normy pro zlepšování ukazatelů spolehlivosti;
− ostatní souvisící normy.

Toto dělení není absolutní a některé z nich je možné zařadit do několika skupin.

Další podrobnosti o citovaných normách lze nalézt na webových stránkách Českého normalizačního institutu na adrese http://www.cni.cz/.

<table>
<thead>
<tr>
<th>IDENTIFIKACE</th>
<th>NÁZEV</th>
<th>Stručná charakteristika</th>
</tr>
</thead>
<tbody>
<tr>
<td>ČSN IEC 50(191)/Změna Z1:2003 (01 0102)</td>
<td>MEDZINÁRODNÝ ELEKTROTECHNICKÝ SLOVNÍK – Kapitola 191: Spolehlivost a akost služeb Změna Z1</td>
<td>Změna Z1 základní názvoslavně normy z oboru spolehlivosti obsahuje několik změn definic z původní normy ČSN IEC 50(191) a rozsáhlý dodatek obsahující termíny a definice z oboru spolehlivosti elektrizačních soustav a rozvodu elektrické energie.</td>
</tr>
<tr>
<td>ČSN IEC 50(191)/Změna Z2:2003 (01 0102)</td>
<td>MEDZINÁRODNÝ ELEKTROTECHNICKÝ SLOVNÍK – Kapitola 191: Spolehlivost a akost služeb Změna Z2</td>
<td>Změna Z2 základní názvoslové normy z oboru spolehlivosti obsahuje definici termínu „zkouška; test“.</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ČSN IEC 60300-3-1:2003 (01 0690)</td>
<td>MANAGEMENT SPOLEHLIVOSTI – Část 3-1: Pokyn k použití – Techniky analýzy spolehlivosti – Metodický pokyn</td>
<td>Metody analýzy spolehlivosti popsané v této normě se používají k předpovědím, překoumáním a zlepšování bezporuchovosti, pohotovosti, udržovatelnosti objektu. Tyto analýzy se provádějí v etapě koncepce a stanovení požadavků, v etapě návrhu a vývoje a v etapě provozu a údržby na různých úrovních a stupních rozčlenění pro vyhodnocení a stanovení uživatelů spolehlivosti objektu. Je v ní uveden všeobecný přehled obecně používaných technik analýzy spolehlivosti. Jsou v ní popsány obvyklé metodyky a norma je určena k poskytování informací nezbytných pro výběr nejvhodnějších metod analýzy popsaných v ostatních částech normy ČSN EN/IEC (60)300-3.</td>
</tr>
<tr>
<td>ČSN EN 60300-3-3:2005 (01 0690)</td>
<td>MANAGEMENT SPOLEHLIVOSTI – Část 3-3: Pokyn k použití – Analýza nákladů životního cyklu</td>
<td>Analýza nákladů životního cyklu je proces ekonomické analýzy zaměřený na posouzení celkových nákladů na pořízení a vlastnictví, jakož i na vypořádání (likvidaci) produktu. Tato analýza má být v maximálně možné míře nedílnou součástí procesu návrhu, aby mohly být znaky produktu a jeho náklady optimalizovány. V této normě se poskytuje obecný návod pro provádění analýzy nákladů životního cyklu včetně vypracování modelu těchto nákladů a jsou v ní uvedeny názorné příklady.</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ČSN IEC 60300-3-11: 2000 (01 0690)</td>
<td>MANAGEMENT SPOLEHLIVOSTI – Část 3-11: Návod k použití – Údržba zaměřená na bezporuchovost</td>
<td>Údržba zaměřená na bezporuchovost (RCM) je metoda pro zavedení programu preventivní údržby, který umožní účelně a účinně dosáhnout požadované úrovně bezpečnosti a pohotovosti zařízení a konstrukcí. Metoda RCM umožňuje používat strom logického rozhodování ke zjišťování použitelných a efektivních požadavků na preventivní údržbu pro zařízení a konstrukce podle bezpečnostních, provozních a ekonomických důsledků zjištěných poruch a podle mechanismu degradace způsobujícího tyto poruchy. Konečným výsledkem práce je posouzení nutnosti provádění konkrétních úkolů údržby.</td>
</tr>
<tr>
<td>ČSN IEC 60300-3-12:2003 (01 0690)</td>
<td>MANAGEMENT SPOLEHLIVOSTI – Část 3-12: Návod k použití – Integrované logistické zajištění</td>
<td>Úspěšný provoz produktu při jeho používání závisí do značné míry na efektivním poskytování logistického zajištění, aby se dosáhly a udržely požadované úrovně jeho výkonnosti a uspokojení zákazníka. Náklady na logistické zajištění značně přispívají k nákladům životního cyklu produktu a je nutné je brát v úvahu při rozhodování o jeho nákupu. Integrované logistické zajištění popsané v této normě je metoda managementu, jejíž pomocí se všechny služby logistického zajištění sestavují strukturovaným způsobem v souladu s daným produktem, což umožňuje optimalizovat jeho řešení, aby bylo přínosem jak pro zákazníka, tak pro dodavatele.</td>
</tr>
<tr>
<td>ČSN EN 60300-3-14:2005 (01 0690)</td>
<td>MANAGEMENT SPOLEHLIVOSTI – Část 3-14: Pokyn k použití – Údržba a zajištění údržby</td>
<td>V této normě je popsána základní struktura údržby a zajištění údržby, jakož i rozmanité minimální všeobecné praktické postupy, které se mají přitom provádět. Účelem této normy je všeobecně použitelným způsobem v základních rysech popsat procesy a techniky týkající se údržby a zajištění údržby, které jsou nutné k dosažení přiměřené spolehlivosti splňující provozní potřeby zákazníka. V této normě je poskytován obecnější přístup k údržbě a zajištění údržby, než se používá v integrovaném logistickém zajištění. Tato norma se věnuje složitým systémům, u kterých je nutné, aby byly údržba a zajištění údržby nastaveny pro specifické situace během etapy návrhu i etapy provozu a údržby.</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>ČSN IEC 706-1: 1992 (01 0661)</td>
<td>POKYNY K UDRŽOVATELNOSTI ZAŘÍZENÍ – Část 1: Oddíl 1, 2 a 3: Úvod, požadavky a program udržovatelnosti</td>
<td>Tato norma byla zrušena a je nahrazena normou ČSN IEC 60300-3-10: 2001 (viz NORMY PRO MANAGEMENT SPOLEHLIVOSTI).</td>
</tr>
<tr>
<td>ČSN EN 60706-2: 2007 (01 0661)</td>
<td>UDRŽOVATELNOST ZAŘÍZENÍ – Část 2: Požadavky na udržovatelnost a studie udržovatelnosti v etapě návrhu a vývoje</td>
<td>V této části normy IEC 60706 se zkoumají požadavky na udržovatelnost a související parametry návrhu a používání a rozebírájí se některé činnosti nutné k dosažení požadovaných znaků udržovatelnosti a jejich vztah k plánování údržby. Tato norma obsahuje úvod do koncepce udržovatelnosti a návod, jak začlenit udržovatelnost do specifikace a smluv a jak se má udržovatelnost považovat za součást procesu návrhu. Popisuje se v ní obecný přístup k dosažení těchto cílů a je v ní ukázáno, jak mají být znaky udržovatelnosti specifikovány v dokumentu s požadavky nebo ve smlouvě. Tato norma nahrazuje normu ČSN IEC 706-2:1994.</td>
</tr>
</tbody>
</table>
Pokyny k udržovatelnosti zařízení

<table>
<thead>
<tr>
<th>Identifikace</th>
<th>Název</th>
<th>Stručná charakteristika</th>
</tr>
</thead>
<tbody>
<tr>
<td>ČSN EN 13460: 2003 (01 0662)</td>
<td>ÚDRŽBA – Dokumenty pro údržbu</td>
<td>Norma obsahuje všeobecné směrnice pro technickou dokumentaci, která musí být pro zajištění údržby dodávána s objektem před jeho uvedením do provozu, a pro dokumentaci informací, které musejí být pro splnění požadavků na údržbu zavedeny v etapě provozu. Je v ní uveden seznam základních dokumentů pro údržbu a jsou podány informace o možném obsahu každého dokumentu. V informativních přílohách je popsána dokumentace pro údržbu s ohledem na funkce údržby, které jsou součástí systému jakosti daného podniku.</td>
</tr>
<tr>
<td>ČSN P CEN/TS 15331:2006 (76 1501)</td>
<td>KRITÉRIA PRO NÁVRH, MANAGEMENT A ŘÍZENÍ SLUŽEB ÚDRŽBY BUDOV</td>
<td>Účelem údržby budov je zajistit využití majetku udržovaním jeho majetkové hodnoty a východnic technických charakteristik v přijetelných mezích po celou dobu jeho života při současném podporování technických modifikací a modifikací vyplývajících z předpisů vztahujících se k východním nebo novým technickým charakteristikám, jak je zvolil provozovatel nebo jak je požaduje zákon. V této evropské technické specifikaci jsou uvedena obecná kritéria a obecné metody plánování, managementu a řízení údržby budov a jejich okolí v závislosti na cích jejich vlastníků a uživatelů a na požadované kvality údržby.</td>
</tr>
<tr>
<td>ČSN EN 13269: 2007 (01 0663)</td>
<td>ÚDRŽBA – Směrnice pro vypracování smluv o údržbě</td>
<td>V této normě je uvedena směrnice pro vypracování smluv na údržbařské práce. Účelem této normy je podporovat přeshraniční a vnitrostátní vzájemné porovnávání smluv o údržbě a vytvářet jasně rozhodnou základnu mezi nimi při zajišťování služeb údržby, zlepšit kvalitu smluv o údržbě tak, aby byly minimalizovány spory, věnovat pozornost službám údržby a stanovit volitelné možnosti jejich poskytování, pomoci a poradit při vypracování návrhů a projednávání smluv o údržbě a při specifikování opatření v případě sporů, stanovit typy smluv o údržbě a vypracovat doporučení pro přidělování práv a povinností mezi smluvními stranami včetně rizik, jakož i zjednodušit vzájemné porovnávání smluv o údržbě.</td>
</tr>
<tr>
<td>NORMY PRO ODHADY HODNOT UKAZATELŮ A ANALÝZU SPOLEHLIVOSTI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ČSN IEC 60319: 2000 (01 0612)</td>
<td>PREZENTACE A SPECIFIKACE DAT o bezporuchovosti elektronických součástek</td>
<td>V této normě je uveden návod pro sběr a prezentaci dat nutných k pochopení charakteristik bezporuchovosti součástek. Je v ní též uveden návod pro uživatele součástek zaměřený na způsob, jakým mají výrobci součástek specifikovat své požadavky na bezporuchovost. Dodržování takového návodu nutí k přesnosti a úplnosti podávání zpráv a může zlepšit jakost sledovaných objektů a jejich částí. Taková prezentace usnadňuje výměnu informací o bezporuchovosti mezi všemi zainteresovanými stranami a umožňuje porovnávat údaje o bezporuchovosti různých typů součástek od různých výrobců.</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ČSN EN 61078: 2007 (01 0677)</td>
<td>TECHNIKY ANALÝZY SPOLEHLIVOSTI – Blokový diagram bezporuchovosti a booleovské metody</td>
<td>Pro analýzu spolehlivosti jsou k dispozici různé analytické metody, jednou z nich je metoda blokového diagramu bezporuchovosti (RBD). Blokový diagram bezporuchovosti je obrazová reprezentace bezporuchovosti systému. Znázorňuje logické spojení (funkčních) součástí potřebných pro úspěšný provoz systému. Technika modelování RBD se má používat především u systémů bez opravy a v případech, kdy nezáleží na pořadí vzniku poruch. V této normě jsou popsány postupy pro modelování spolehlivosti systému a pro použití modelu za účelem výpočtu jeho ukazatelů bezporuchovosti a pohotovosti. Souběžně s touto normou se může do 2009-03-01 používat dosud platná ČSN IEC 1078:1993 (01 0677) Metody analýzy spolehlivosti – Metoda blokového diagramu bezporuchovosti (a její změna 1:1995).</td>
</tr>
<tr>
<td>ČSN EN 61160: 2006 (01 0678)</td>
<td>PŘEZKOUMÁNÍ NÁVRHU</td>
<td>V této normě jsou uvedena doporučení pro praktické provádění postupů přezkoumání návrhu jako prostředku pro ověření, že byly splněny požadavky na vstupy pro návrh, a pro stimulaci zlepšování procesu. Přezkoumání návrhu usnadňuje posouzení stavu návrhu vzhledem ke vstupním požadavkům, umožňuje identifikovat příčiny zlepšení i zlepšení práci manažéra návrhu k vhodným opatřením. V této normě jsou poskytovány směrnice pro plánování a provádění přezkoumání návrhu a specifické podrobnosti týkající se příspěvků odborníků v oboru bezporuchovosti, udržovatelnosti, zajištěnosti údržby, pohotovostí a bezpečnosti. Je v ní popsáno vhodné složení týmu pro přezkoumání návrhu a je podrobně popsán celý proces přezkoumání návrhu. Tato norma nahrazuje normu ČSN IEC 1160:1994.</td>
</tr>
<tr>
<td>ČSN IEC 61703: 2002 (01 0607)</td>
<td>MATEMATICKÉ VÝRAZY pro termíny bezporuchovosti, pohotovosti, udržovatelnosti a zajištěnosti údržby</td>
<td>Tato norma obsahuje matematické výrazy umožňující kvantifikovat ukazatele bezporuchovosti, pohotovosti, udržovatelnosti a zajištěnosti údržby popsány v ČSN IEC 50(191). Tato norma je základem pro většinu statistických výpočtů hodnot ukazatelů používaných v oboru spolehlivosti a odvolává se na ni mnoho norm z tohoto oboru.</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ČSN IEC 61710: 2001 (01 0650)</td>
<td>MOCNINOVÝ MODEL – Testy dobré shody a metody odhadu parametrů</td>
<td>V normě je popsan mocninový model, který je jedním z nejpoužívanějších modelů pro popis bezporuchovosti opravovaných objektů, a jsou v ní uvedeny pokyny pro jeho použití. Jsou v ní uvedeny postupy pro odhad parametrů mocninového modelu a pro test dobré shody dat s tímto modelem. Tento postup poskytuje konfidenční intervaly parametru proudu poruch a předpovědní intervaly důvody do budoucích poruch.</td>
</tr>
<tr>
<td>ČSN IEC 61882: 2002 (01 0693)</td>
<td>STUDIE NEBEZPEČÍ A PROVOZOSCHOPNOSTI (studie HAZOP) – Pokyn k použití</td>
<td>HAZOP je strukturovaná a systematická technika zkoumání daného systému s cílem zjistit potenciální nebezpečí v systému a potenciální problémy s provozuschopností systému, které pravděpodobně povedou k neshodám produktům. V normě je uveden návod k použití této techniky, včetně definic, přípravy, pracovních porad HAZOP, výsledné dokumentace a dalšího postupu. Je v ní též uveden široký soubor příkladů zahrnujících různá průmyslová odvětví, které ilustrují zkoumání pomocí studie HAZOP.</td>
</tr>
<tr>
<td>ČSN IEC 62198: 2002 (01 0694)</td>
<td>MANAGEMENT RIZIKA PROJEKTU – Směrnice pro použití</td>
<td>Tato norma se zabývá používáním politik, postupů a pracovních technik managementu rizika projektu u úkolů zajišťujících se vytvářením kontextu, zjišťováním, analýzou, vyhodnocováním, posuzováním, ošetřováním, monitorováním a sledováním rizik takovým způsobem, který umožňuje organizaci minimalizovat ztráty a nákladově efektivním způsobem maximalizovat vhodné příležitosti. Norma je určena pro pracovníky činící rozhodnutí, včetně manažerů projektu, manažerů rizik a obchodních manažerů.</td>
</tr>
<tr>
<td>ČSN EN 62308: 2007 (01 0630)</td>
<td>BEZPORUCHOVOST ZAŘÍZENÍ – Metody posuzování bezporuchovosti</td>
<td>V této normě je popsáno použití tří přístupů k posuzování bezporuchovosti: analýzy podobnosti, analýzy životnosti a předpovědi pomocí příručky. Výsledky takového posuzování jsou určeny k použití jako vstup pro rozhodování v časných etapách návrhu zařízení, jako je volba architektury systému, jakož i pro obchodní rozhodování, jako je odhad nákladů na záruky nebo záruck nákladů na údržbu. Tyto výsledky mohou být dále použity jako počáteční odhad vstupu například do analýzy bezpečnosti nebo do analýzy FTA. Moderní elektronické součástky a objekty jsou tak mimo poručové, že je odhadování a ověřování jejich bezporuchovosti zkušením velmi obtížné a jediným způsobem získání počátečního odhady bezporuchovosti jsou těžící často data z provozu předchozích obdobných objektů. Metoda založená na datech o předchozích objektech se nazývá princip podobnosti. Tato metoda je moderní alternativou klasické, ale nyní již zastaralé předpovědi pomocí příručky.</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ČSN EN 62309: 2005 (01 0695)</td>
<td>SPOLEHLIVOST PRODUKTŮ OBSAHUJÍCÍCH OPAKOVANÉ POUŽITÉ DÍLY – Požadavky na funkčnost a zkoušky</td>
<td>Většina dílů moderních produktů je vyrobena se střední dobou života mnohem delší, než uživatel počítá, takže jsou produkty a jejich díly likvidovány, přestože jsou stále ještě použitelné. Moderní produkty jsou méně poruchové a současné stále rychleji a více zastarávají. K řešení tohoto problému se zavádí norma, která určí zákazníkům a výrobce, že mohou mít produkty vyrobené s použitím dílů, které již byly dříve použity, bez poklesu spolehlivosti. Tyto díly musejí splňovat vysoká příjímací kritéria, aby mohly být kvalifikovány jako stejně dobré jako nové. Takový postup je přínosný jak pro výrobce, tak pro zákazníka.</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ČSN IEC 605-3-1: 1992 (01 0644)</td>
<td>ZKOUŠKY BEZPORUCHOVOSTI ZAŘÍZENÍ – Část 3-1: Doporučené zkušební podmínky – Přenosné zařízení pro vnitřní použití – Nízký stupeň simulace</td>
<td>Tato část normy obsahuje doporučené zkušební podmínky (cykly klimatického, mechanického a provozního namáhání) pro zkoušky bezporuchovosti zařízení. Hlavním účelem předkládaných doporučených zkušebních podmínek je zajistit, aby zařízení rozličného tvaru, konstrukce a funkce, avšak s podobným použitím, byla podrobená stejným zkušebním podmínkám. Použití standardizovaných podmínek těž zlepšuje srovnatelnost výsledků zkoušek. Tato část normy ČSN IEC 605-3 obsahuje popis provozních podmínek pro přenosná zařízení s hmotnostmi do 15 kg určená k vnitřnímu použití.</td>
</tr>
<tr>
<td>ČSN IEC 605-3-2: 1992 (01 0644)</td>
<td>ZKOUŠKY BEZPORUCHOVOSTI ZAŘÍZENÍ – Část 3-2: Doporučené zkušební podmínky. Zařízení pro stacionární použití na místech chráněných proti povětrností – Vysoký stupeň simulace</td>
<td>Tato část normy obsahuje doporučené zkušební podmínky při zkouškách bezporuchovosti zařízení pro stacionární použití na místech chráněných proti povětrností (v budovách) v klimatech popisovaných v ČSN IEC 721-2-1 jako „mírná“.</td>
</tr>
<tr>
<td>ČSN IEC 60605-4:2002 (01 0644)</td>
<td>ZKOUŠENÍ BEZPORUCHOVOSTI ZAŘÍZENÍ – Část 4: Statistické postupy pro exponenciální rozdělení – Bodové odhady, konfidenční intervaly, předpovědní intervaly a toleranční intervaly</td>
<td>V této normě jsou uvedeny statistické metody pro vyhodnocení bodových odhadů, konfidenčních intervalů, předpovědních intervalů a tolerančních intervalů pro intenzitu poruch objektů, jejichž doba do poruchy se řídí exponenciálním rozdělením. Tyto metody jsou základem pro vyhodnocování výsledků určovacích zkoušek bezporuchovosti prováděných za účelem odhadu hodnot ukazatelů bezporuchovosti.</td>
</tr>
<tr>
<td>NORMY PRO OVĚŘOVÁNÍ A ZJIŠŤOVÁNÍ HODNOT UKAZATELŮ SPOLEHLIVOSTI</td>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>ČSN IEC 1070: 1994 (01 0646)</td>
<td>POSTUPY OVĚŘOVACÍCH ZKOUŠEK pro součinitele ustanovené pohotovosti</td>
<td>V normě jsou popsány metody zkoušení pohotovosti často udržovaných objektů, pokud se u nich používá jako ukazatel pohotovosti buď ustanovená hodnota součinitele pohotovosti, nebo ustanovená hodnota součinitele nepohotovosti. Je to základní norma pro zkoušení pohotovosti zařízení.</td>
</tr>
<tr>
<td>ČSN IEC 61649: 1999 (01 0653)</td>
<td>TESTY DOBRÉ SHODY – Konfidenční intervaly a dolní konfidenční meze pro data s Weibullovým rozdělením</td>
<td>V této normě jsou uvedeny numerické metody, které jsou doplňkem grafických metod při provádění testů dobré shody pro doby do poruchy s Weibullovým rozdělením, a jsou v ní uvedeny příbližné postupy získání konfidenčních intervalů pro parametry dvouparametrického Weibullová rozdělení, pokud jsou odhadnuty metodou maximální věrohodnosti. Kromě toho jsou v ní uvedeny doporučené postupy získání dolních konfidenčních mezi pro 10 %-ní kvartily technického života a pro pravděpodobnost bezporuchového provozu. Tato norma je použitelná, kdykoliv je náhodný výběr objektů podroben zkoušce pro zjištění dob do poruchy za účelem odhadování ukazatelů bezporuchovosti základního souboru, ze kterého byly tyto objekty vybrány.</td>
</tr>
<tr>
<td>ČSN IEC 61650: 1998 (01 0654)</td>
<td>TECHNIKU ANALÝZY DAT O BEZPORUCHOVOSTI – Postupy porovnávání dvou konstantních intenzit poruch a dvou konstantních parametrů proudu poruch</td>
<td>V této normě jsou specifikovány postupy pro porovnání dvou pozorovaných intenzit poruch, parametru proudu poruch či intenzit/parametrů proudu příslušných údajů. Postupy se používají k určení, zda může být domněnky rozdíl mezi dvěma soubory pozorování považováno za statisticky významný. Předpokládá se, že časové intervaly do poruchy (události)/mezi poruchami (událostmi) jsou nezávislé a jsou shodné exponenciálně rozděleny během období pozorování. Dále se předpokládá, že existují technické nebo jiné důvody k domněně, že mezi pozorovaným znakem bezporuchovosti dvou porovnávaných souborů výrobků může existovat rozdíl (zlepšení nebo zhoršíni). Tyto postupy lze použít též na pozorování dvou řad jakýchkoliv platných údajů, pokud platí výše uvedené předpoklady.</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ČSN IEC 61163-2:1999 (01 0648)</td>
<td>TŘÍDĚNÍ NAMÁHÁNÍ PRO ZLEPŠENÍ BEZPORUCHOVOSTI – Část 2: Elektronické součástky</td>
<td>V této části normy ČSN IEC 61163 se poskytuje směrnice pro metody a postupy třídění namáháním pro zlepšení bezporuchovosti elektronických součástek. Tato norma je určena k použití pro výrobce součástek (jako směrnice), pro uživatele součástek (jako směrnice pro dohodnutí s výrobci součástek o požadavcích na třídění namáháním nebo na plánování procesu třídění namáháním u uživatele kvůli požadavkům na bezporuchovost) a pro smluvní subdodavatele, kteří poskytují třídění namáháním jako službu. Neoficiální český překlad této normy má k dispozici Technická univerzita v Liberci.</td>
</tr>
<tr>
<td>ČSN EN 61014: 2004 (01 0645)</td>
<td>PROGRAMY RŮSTU BEZPORUCHOVOSTI</td>
<td>Zlepšování bezporuchovosti pomocí programu jejího růstu je zpravidla součástí celkové činnosti zajišťování bezporuchovosti při vývoji produktu. Tento program se zejména používá u nových nebo nevyzkoušených technik, součástí a/nebo a zařízení, jejichž významnou část tvoří software. Snížení pravděpodobnosti vzniku poruchy nalezení slabých míst návrhu nebo vývoje produktu růstu bezporuchovosti je zásadně důležité k zabránění pozdějšího výskytu poruch a/nebo výrobně změnění součástek či použití v provozu. Pozdější změny návrhu jsou často velmi obtížné, nákladné a často náročné. Jestliže jsou nezbytné změny návrhu provedeny v co nejčasnější možné etapě, mohou být náklady životního cyklu sníženy na minimum.</td>
</tr>
<tr>
<td>ČSN EN 61164: 2005 (01 0647)</td>
<td>RŮST BEZPORUCHOVOSTI Metody statistických testů a odhadů.</td>
<td>V této normě je popsán moceinnový model růstu bezporuchovosti a návazný model pro projektování a je v ní uveden návod, jak tyto modely krok za krokem používat. Tato norma představuje metodický nástroj umožňující realizaci programu popsaný v ČSN EN 61014. Modely jsou založeny na datech o poruchách, která byla zjištěna v programu zlepšování bezporuchovosti, a týkají se odhadování parametrů, konfidenčních interválů pro bezporuchovost produktu, testů dobré shody pro ověření oprávněnosti použití modelu a dalších nástrojů pro objektivní sledování růstu bezporuchovosti, ať kladného, nebo záporného.</td>
</tr>
</tbody>
</table>
NORMY PRO ZLEPŠOVÁNÍ UKAZATELŮ SPOLEHLIVOSTI

<table>
<thead>
<tr>
<th>IDENTIFIKACE</th>
<th>NÁZEV</th>
<th>Stručná charakteristika</th>
</tr>
</thead>
<tbody>
<tr>
<td>ČSN EN 62429: 2009 (01 0647)</td>
<td>RUST BEZPORUCHOVOSTI – Zkoušení namáháním pro zjišťování časných poruch v jedinečných složitých systémech</td>
<td>V této normě je uveden návod k růstu bezporuchovosti během závěrečných zkoušek nebo přejímacích zkoušek u jedinečných složitých systémů. Poskytuje návod k podmínkám zrychlené zkoušky a kritéria pro ukončení těchto zkoušek. Tato norma se zabývá růstem bezporuchovosti opravitelných složitých systémů, které se skládají z hardwaru se zabudovaným softwarem. Je možné ji použít k popisu postupu při přejímacích zkouškách, při „záběhu“ a k zajištění toho, že pravděpodobnost bezporuchového provozu dodávaného systému není zhoršena chybami kódování, řemeslnými chybami nebo výrobními chybami. Normu je možné použít i v případě, kdy společnost chce optimalizovat dobu trvání zkoušek interní výroby prováděných během výroby prototypů, jednotlivých systémů nebo malých sérií. Norma se v současné době zpracovává a vydě začátkem roku 2009.</td>
</tr>
<tr>
<td>ČSN IEC 61713: 2001 (01 0692)</td>
<td>ZAJIŠTĚNÍ SPOLEHLIVOSTI SOFTWARU POMOCÍ PROCESŮ JEHO ŽIVOTNÍHO CYKLU – Návod k použití</td>
<td>Tato norma obsahuje návod pro provádění procesů životního cyklu softwaru popsaných v ČSN ISO/IEC 12207, na kterou tato norma navazuje, za účelem dosažení takového softwaru, který je bezporuchový a udržovatelný a má dobrou zajištěnost údržby. Tento návod je určen pro podporu normy ČSN IEC 60300-3-6. Je určen nejen odborníkům na software a na spolehlivost, ale i manažerům projektu, odborníkům na jakost a jiným účastníkům projektu, kteří se podílejí na vývoji nebo na používání systémů nebo výrobků obsahujících software.</td>
</tr>
<tr>
<td>IDENTIFIKACE</td>
<td>NÁZEV</td>
<td>Stručná charakteristika</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>ČSN 01 0611: 1984</td>
<td>SPOLEHLIVOST V TECHNICE – Pravidla pro stanovení bodových a intervalových odhadů ukazatelů spolehlivosti – Parametrické metody</td>
<td>V normě jsou popsány parametrické metody pro odhad hodnot ukazatelů bezporuchovosti a životnosti při dobách bezporuchového provozu podléhajících zákonům exponenciálního, normálního, logaritmicko normálního, Weibullova a gama rozdělení. V normě se používá pouze metoda maximální věrohodnosti. Může se používat pro obnovované i pro neobnovované objekty. V informačních přílohách jsou uvedeny základní používaná označení a příklady použití normy.</td>
</tr>
</tbody>
</table>
Metodika zjednodušeného intervalového odhadu parametru MTBF - ukazatele bezporučovosti

Ing. Libor Obruča

1. Úvod

Rád bych vám ukázal několik základních orientačních výpočtů a odhadů, které souvisí se začátky řešení problematiky spolehlivosti. Předpokládám, že prozatím jste se, jako specialisté zajímající se doposud především o problémy související s realizací a vylepšováním systémů managementu kvality QMS, nemuseli starat o spolehlivostní vlastnosti těchto produktů. S některými základními pojmy, které souvisí s problematikou nazývanou „spolehlivost produku“ a s jejich správnými interpretacemi byste se měli správně orientovat. Např. jedním z prvních pojmů, které souvisí se spolehlivostí produktní jsou, např. MTBF (možná někdy MTTF apod.), případně „potřebná spolehlivost musí být alespoň 99 %“ apod. Ředitelé a manažéři tyto pojmy různě vnímají a používají, ale mohou mylně. Zároveň se omlouvám těm z vás, kteří jste v této věci znali. Nicméně moje životní zkušenosti jsou, že i zopakování si některých informací, neuškodí.

Protože tato přednáška není kurzem spolehlivosti pro studentské, abyste řádu výrazů a pojmů, které budou použity, vzali pouze na vědomí, že existují.

2. Jak a proč orientačně zjišťovat jaké MTBF nás produkt vykazuje?

MTBF jsou i v našich krajích používané anglické zkratky „Mean operating Time Between Failures“, česky „Střední provozní doba mezi poruchami“. Také je někdy uváděna zkratka MTTF („Mean Time To Failure“) - „Střední doba do poruchy“. Tyto detaily v této fázi informaci o spolehlivosti nebudeme rozebírat.

MTBF je parametrem ukazatele bezporučovosti R(t), (Reliability). Tady vznikají první dvě nepřesnosti, kterých se většina dříve zmíněných pracovníků, zaměřených na kvalitu, dopouští.

Jsou to dva pojmby
a) MTBF a reliability
b) střední hodnota

Ad a) Jakmile se někde v textu objeví „reliability“ je to signál, že jde o „spolehlivost“. My bychom už tedy měli vědět, že skutečně jde o spolehlivost, ale že jde jen o jeden z parametrů spolehlivosti, který se jmenuje - bezporučovost. Ukazatelem je pravděpodobnost bezporučového provozu R(t) za časový interval t hodin (nebo. např. počet zkušebných cyklů apod) v jehož vzorci /1/ je uvedený parametr MTBF.

\[R(t) = \exp^{-\frac{t}{MTBF}} \]

Pravděpodobnost vzniku poruchy F(t) za dobu t (nebo počet cyklů) je

\[F(t) = 1 - R(t) \]

Protože pravděpodobnost provozu do provozu nebo do vzniku poruchy je lev jistý, tj.

\[R(t) + F(t) = 1 \]

V prvním příběžení obvykle předpokládáme, že vznikající poruchy lze modelovat tzv. exponečněním rozdělením pravděpodobnosti časových okamžiků vzniku jednotlivých poruch. Viz rovnici /1/.

Tento předpoklad bývá většinou splněn u elektronických produktů provozovaných po odeznění období výskytu tzv. časných poruch (early mortality failures).

U neelektrických produktů je pro první příběží exponečnění zákon (jak se exponečněním přiblížení také říká) rovnož přijetelný, pokud jde o povozní období mimo doby tzv. „záběhu“ nebo časových úseků sledování, kdy se už začíná projedovat opotřebení, resp. starnutí produktu.

Předpoklad možností modelování vznikající poruchy exponečněním zákonem (resp. o konstantní hodnotě MTBF), musí být ověřován testy tzv. „dobré shody“ - např. ČSN IEC 60605-6-1998 (01 0644) Zkoušení bezporučovosti zařízení – Část 6: Testy platnosti předpokladu konstantní intenzity poruch nebo konstantního parametru proudu poruch. Tyto testy je ovšem možné provést jen s datovými soubory, které obsahují časově záznamy okamžiků vznikajících poruch (což musí být splněno, např. v případech zkoušek spolehlivosti). Nové pojmby, které s MTBF a R(t) souvisí, jako např.
intenzita poruch λ souvisí s MTBF jednoduchým vztahem $/2/$. Tento vztah platí jen pro platnost exponečního rozdělení poruch.

$$\lambda = 1 / \text{MTBF} = \text{konst.}$$

Pro zvídavé odkazuji na normu ČSN EN 61703:2002 (01 0607) Matematické výrazy pro ukazatele bezporučnosti, pohotovost, udržovatelnosti a zajištěnosti údržby.

Ad b) Podobně střední hodnotu si každý představí např. jako aritmetický průměr. Matematická statistika má ještě určité podmínky, které souvisí s tím, jedná-li se o tzv. „základní (úplný) soubor dat“ nebo „jen“ o tzv. „výběrový soubor“ což je nejčastější praktický případ se kterým se budete nejspíš seštívat. Protože MTBF je střední provozní doba mezi poruchami očekávají mnozí, že za tuto dobu (nebo např. počet zkušebních cyklů) nemůže dojít k poruše. Zapominají na to, že vznik poruchy je věc náhodná a tedy je z oblasti matematické statistiky a teorie i praxe spolehlivosti. MTBF je parametrem ukazatele bezporuchovosti $R(t)$. Důsledky této skutečnosti jsou uvedeny v následující tabulce. Do poručují si je vždy uvědomovat.

<table>
<thead>
<tr>
<th>Zapamatujme si, že</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A) pravděpodobnost bezporučového provozu za dobu (resp. počet cyklů) odpovídajících hodnotně parametru ukazatele $t = \text{MTBF}$ je</td>
<td></td>
</tr>
<tr>
<td>$R(t) = 0,37, \ tj. \ 37%$.</td>
<td></td>
</tr>
<tr>
<td>Tím můžeme vypočítat pravděpodobnost, že za tuto dobu (počet cyklů) vznikne porucha</td>
<td></td>
</tr>
<tr>
<td>$F(t) = 1 - R(t) = 0,63, \ tj. \ 63%$.</td>
<td></td>
</tr>
<tr>
<td>B) pravděpodobnost bezporučového provozu odpovídající jedné desetině parametru ukazatele MTBF, tj. $t = 0,1 \ \text{MTBF}$ je</td>
<td></td>
</tr>
<tr>
<td>$R(t) = 0,90, \ tj. \ 90%$.</td>
<td></td>
</tr>
<tr>
<td>pravděpodobnost, že za tuto dobu (počet cyklů) vznikne porucha je</td>
<td></td>
</tr>
<tr>
<td>$F(t) = 1 - R(t) = 0,10, \ tj. \ 10%$.</td>
<td></td>
</tr>
<tr>
<td>C) pravděpodobnost bezporučového provozu odpovídající jedné desetině parametru ukazatele MTBF, tj. $t = 0,01 \ \text{MTBF}$ je</td>
<td></td>
</tr>
<tr>
<td>$R(t) = 0,99, \ tj. \ 99%$.</td>
<td></td>
</tr>
<tr>
<td>D) pravděpodobnost, že za tuto dobu (počet cyklů) vznikne porucha je</td>
<td></td>
</tr>
<tr>
<td>$F(t) = 1 - R(t) = 0,01, \ tj. \ 1%$.</td>
<td></td>
</tr>
</tbody>
</table>

Z informací uvedených v tabulce Tab. 1 vidíme, že jako obvykle, všechno je trochu jinak, že s interpretací střední hodnoty je dobré si uvědomit „jak a kdy“. Proč bychom uvedené informace měli znát jsou dány skutečnosti, že bychom měli z počátku alespoň orientačně vědět, jaké ukazatele bezporučovosti náš produkt můžete dosahovat a co to znamená pro jeho provozuschopnost, a abychom mohli např. posoudit jakou máme šanci splnit požadavky našeho zákazníka. Případně jak nerealně požadavky po nás (resp. pro nás) zákazník požaduje apod. Protože mají být provedeny zkoušky spolehlivosti a to nejčastěji zkoušky bezporučovosti. Přitom i jen orientační znalost ukazatelů bezporučovosti podstatné zkrátí nutnou délku tzv. ověřovací zkoušky bezporučovosti. Je ekonomicky mnohem úspornější provádět tzv. ověřovací zkoušky bezporučovosti [ČSN EN 61124:2007 (01 0644) Zkoušení bezporučovosti - Ověřovací zkoušky pro konstantní intenzitu poruch a konstantní parametr proudu poruch], známe-li, byť i jen alespoň trochu věrohodné orientační odhady MTBF a tím i související ekonomické náklady.
3. Základem všeho jsou informace

(nezkreslené politickým a konkurenčním lobbingem)

Základem pro možnost provádění odhadů parametrů MTBF a dalších je dostupnost potřebných dat vypovídajících o poruchovosti produktů, které chceme vyhodnotit. Data nejen z nové produkce, ale i z předchozí produkce, z jejich zkoušek a provozů, případně z obdobných produktů jiných producentů. Přítom stačilo respektovat a ukázkově plnit doporučení a požadavky systémového managementu kvality (QMS) týkající se sledovatelnosti procesů.

Toto je klíčovým problémem realizace systému managementu spolehlivosti (DMS), který je prostředkem pro zajištění oně potřebné přidané hodnoty k perfektní jakoosti (kvalitě) příslušných produktů, realizovaných QMS zásadami.

Základní snahe by mělo byt, kromě získávání dat z provozů a používání produktů, zlepšování kvality užití dat. K tomu jedně efektivní cesty vedou přes tzv. metody objektivizace a automatizace dat z provozů a používání produktů. Kromě obvyklých provozních deníků a záznamů s manuálními záznamy využívá např. záznamy do „černých skříněk“ (viz letecký, akustické záznamy, video a foto záznamy (např. z kontrol a zkoušení), snímání dat z procesů, včetně zkoušek snimačem „čárového“ kódu atp.

Mluvime-li o datech a jejich vyhodnocování dostáváme se do oblasti statistiky. U mnohých pracovníků velmi oblibenou to disciplínou. V oblasti teorie aplikace spolehlivosti, která vyžaduje, abysme o ni alespoň něco věděli.

V prvním příbližení musí být data pokud možno alespoň z homogenních souborů sledovaných produktů (tj. stejný typ produktu, příbližně stejné podmínky provozu, záznamy o vzniklých poruchách, v prvním příbližení bez nároků na časové okamžiky vzniku těchto událostí, atp.).

4. Intervalový odhad MTBF parametru bezporuchovosti R(t)

Při opakovaných pokusech do doby t (nebo počtu zkušebních cyklů) obecně vznikne různý počet poruch r. Bodové odhady se budou vyrážet v určitém rozmezí (viz dále rovnici /9/) a s určitou pravděpodobností (konfidenční) tyto mezí (dolní a horní), nepřekročit. Toto pravděpodobnost je tzv. konfidenční úroveň, zkráceně „konfidenční“. Toto pravděpodobnost (konfidenční) může být např. 90% konfidenční znamená, že v příslušných doporučujících mezích bude soustrčeno 90 % výsledků (bodových odhadů) a jen 10 % se vyskytne vně této mezí. Výsledkem je tzv. intervalový odhad MTBF.

Pro odhady dolní jednostranné 90 % konfidenční meze parametru ukazatele bezporuchovosti MTBF_D 90% existuje např. následující vzorec /7/.

/7/ ČSN IEC 60065-4:2002 (01 0644) „Zkoušení bezporuchovosti zařízení - část 4: Statistické postupy pro exponenciální rozdělení - Bodové odhady, konfidenční intervaly, předpovědní intervaly a toleranční intervaly.“
m_{PE} > MTBF_{D190\%} = \frac{2.t}{\chi_{\alpha}^2(2r+2)} \quad \ldots/7/ \\

\text{t} \ldots \text{je kumulovaná (souhrnná) doba zkoušky nebo např. provedených zkušebních cyklů sledovaného provozu}
\text{c} \ldots \text{pozadovaná konfidenční mez (pravděpodobnost), např. tzv. 90\%, tj. je c= 0,9}
\alpha \ldots \text{je tzv. statistická úroveň významnosti; platí} \alpha = 1- c
r \ldots \text{počet poruch vzniklých ve sledované kumulované době t}

Pro výpočet kvantit v hodnot statistické výběrové funkce „Chi kvadrát“ označené \(\chi^2 \), použijeme tabulkový procesor Excel ve funkcích "statistiky".

Kvantily rozdělení se v Excelu označují
\text{CHIINV(Prst; volnost)},

kde
\text{Prst = 1 - c = \alpha, tzv. úroveň významnosti - viz pozn. *)}
a doplňují se do vzorců /7/, /8/, /9/, podle toho, který odhad provádíme.
\text{volnost} \quad \text{tzv. počet stupňů volnosti,}
\text{např. podle vzorce /7/, volnost = 2r+2}

Poznámka:
*) Při použití tabulkového procesoru Excel pro výpočet kvantit funkce „CHIINV dosazujete za Prst hodnoty podle vzorců /7/ až /9/ Excel počítá s tzv. „kritickými hodnotami“.

Pokud v průběhu zkoušky nevznikne žádná porucha (r = 0) lze odhadnout jenom dolní mez hledané náhodné veličiny (zde MTBF) a ve vzorce /7/ se změní argument (počet stupňů volnosti) funkce „Chi kvadrát“ na hodnotu 2. Viz vzorec /8/.

\[\chi_{\alpha}^2(2) \quad \ldots/8/ \]

Pro \text{odhady dvoustranného intervalu} použijeme při r > 0 vzorec /9/ a /10/.

\[\text{MTBF}_{D2;90\%} = \frac{2.t}{\chi_{\alpha}^2(2r+2)} < m_{PE} < \frac{2.t}{\chi_{1-\alpha/2}^2(2r)} = \text{MTBF}_{H2;90\%} \quad \ldots/9/ \]

kde \text{MTBF}_{PE} = m_{PE} je střední hodnota parametru MTBF ukazatele bezporuchovosti.

Např. při pokusu (zkoušce) provedeném t zkušebních cyklů při nichž dojde k r > 0 poruchám zjistíme tzv. \text{bodovy odhad} (PE Point Estimate) hledaného parametru ukazatele bezporuchovosti. Ve statistice bylo odvozeno, že nejlepším odhadem střední hodnoty (základního souboru dat) náhodné veličiny pro počet vzniklých poruch r > 0 je její \text{výběrový aritmetický průměr} - viz vzorec /10/.

\[x_{PE} = x = \frac{\Sigma t_i}{\Sigma r_i} = \bar{r} = \text{MTBF}_{PE} = m_{PE} \quad \ldots/10/ \]

Za definovaných podmínek provozu v závislosti na technologii a technickém postupu zkoušení produktů je možné počty dílčích časových intervalů nebo provedených cyklů v jednotlivých pokusech (zkouškách, provozech) kumulovat. Výsledný odhad bezporuchovosti je pak možné provést s touto kumulovanou hodnotou nejen počtu vzniklých poruch (r), ale i celkové doby provedené zkoušky nebo např. provedených zkušebních cyklů.

Nezanedbatelným důvodem proč provádíme intervalové odhady je ta skutečnost, že nevznikne-li porucha, neumíme vypočítat bodový odhad, tj. aritmetický průměr MTBF_{PE}.

V citované normě ČSN IEC 60605-4:2002 je uvedena řada dalších metod odhadů ukazatelů bezporuchovosti, kterou je možno aplikovat, podle konkrétních výchozích materiálů z prováděného sběru dat o spolehlivosti provozů (používání) sledovaných produktů.

Provedením odhadu intervalových odhadů parametru ukazatele bezporuchovosti MTBF můžeme vypočítávat intervalové odhady pravděpodobnosti bezporuchového provozu zkoušeného objek-
tu, resp. pravděpodobnost vzniku poruchy ve zvoleném časovém intervalu (resp. počtech cyklů), postupným dosazováním vypočtených mezi parametru MTBF.

V prvním přiblížení k řešení problému předpokládáme, že vznik poruch ve sledovaném objektu má tzv. exponenciální rozdělení těchto náhodně vznikajících poruch v čase (resp. v provedených počtech cyklů). To je v praxi splněno u dostatečně věrohodného u elektronických zařízení. Ty teoreticky nepodléhají opotřebení a jsou v ustáleném provozním stavu (ne v tzv. období časných poruch). Nicméně i u většiny ostatních zařízení s málo četnými výskytu poruch lze aproximaci vznikajících poruch v prvním přiblížení provést exponenciálním rozdělením.

Při podrobnějších a přesnějších odhadů je nutné prověřit do jaké míry byly předpoklady provedené při prvním přiblížení oprávněné – např. pomocí tzv. „testu dobré shody", ale to musí být k dispozici dostatečný počet odpovídajících záznamů z provozu (zkoušek) objektů a zeměna je nutné, abychom měli k dispozici údaje o časech kdy jednotlivé poruchy vznikly a další podrobnosti. Použit normu ČSN IEC 60505-6:1998 (01 0644) Zkoušení bezporuchovosti zařízení – Část 6: Testy platnosti předpokladu konstantní intenzity poruch nebo konstantního parametru proudu poruch – obvykle je třeba, aby z počátku u zkouškydohližel pracovník specializující se na problematiku spolehlivosti.

5. Závěr

Při znalosti uvedených souvislostí a výsledků provedených odhadů můžeme např. včas rozpoznat, jak asi je kvalifikován požadavek na spolehlivost na výběrový a případně si výjasnit jeho zadání.

Ve dvou přílohách k této přednášce P1 a P2 jsou dva soubory v Excelu, které si můžete podle toho doma (za domácí cvičení) v Excelu naprogramovat podle vzorců /7/ až /10/ a realizovat si malou automatizaci výpočtu řešených vzorců, simulovat si tím jaké výsledky můžete očekávat, případně jaké rozptyl výsledků dosahujete. Odhady jsou podle volitelekých změn vstupních parametrů (např. délky sledovaného intervalu a počtu poruch r vzniklých v tomto časovém intervalu). Případně k provedení intervalových odhadů MTBF s konkrétními daty, které může u vás k dispozici.

Přílohy:

Příloha P1 - Intervalové odhady MTBF s 90% kondidencí v Excelu

V této příloze jsou vzorce z této přednášky určené pro intervalové odhady MTBF (viz pro intervalové odhady /7/ až /9/ (v příloze P1 vzorce /1/, /1/, /1/) a pro výpočet výběrového aritmetického průměru /8/. Pro úplnost je doplněn i vzorec pro horní mez jednostranného odhadu (viz /2/ v příloze P1).

Příloha P2 - Odhad potřebné délky sledování (zkoušky)

Tato příloha ukazuje jednu z možností jak využít vzorec pro odhad MTBF, pro zjištění potřebné kumulované doby t pro různé zvolené počty poruch r, a příspustnou dolní mez MTBF_{D1-c}.

MTBF_{D1-c}.
Příloha P1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vzorce umožňující použít tabulkový procesor v Excelu ve statistických funkcích. Kvantily Chi-kvadrát vypočítávány pod symbolem CHIINV(Prst; volnost).</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Odhady provedené podle mnou používaných vztahů</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dolní "D" jednostranný intervalový odhad MTBF = m pro konfidence c = 1-α</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Horní "H" jednostranný odhad MTBF = m pro konfidence c = 1-α</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>c</td>
<td>0,90 *</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>α = 1 - c</td>
<td>0,10 *</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>t</td>
<td>10 000,00 *</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>r</td>
<td>1,00 *</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Prst α</td>
<td>0,10 Vzorec /1/</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>volnost=2r+2</td>
<td>4,00 Vzorec /1/</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CHIINV</td>
<td>7,78 Vzorec /1/</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>mD1,c</td>
<td>2 570,88</td>
<td>2 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>mpe = t/r</td>
<td>10 000,00</td>
<td>10 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Dvoustranný intervalový odhad MTBF = m pro konfidence c = 1-α</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Odhad dolní meze</td>
<td>(m_{D2;1-c} = \frac{2t}{\chi_{\alpha/2}^2(2r+2)})</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Odhad horní meze</td>
<td>(m_{H2;1-c} = \frac{2t}{\chi_{1-\alpha/2}^2(2r)})</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>c</td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>α = 1 - c</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>t</td>
<td>10 000,00</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>r</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Prst=α/2</td>
<td>0,05 Vzorec /3/</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>volnost=2r+2</td>
<td>4,00 Vzorec /3/</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>CHIINV</td>
<td>9,49 Vzorec /3/</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>mH2,c</td>
<td>2 107,99</td>
<td>2 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>mpe = t/r</td>
<td>10 000,00</td>
<td>10 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Pozn.: Tónované zabarvená políčka (žlutá) jsou pro volitelné parametry. V polích B7, B9, B10 lze tvoret vstupní hodnoty pro odhady a ty jsou použity ve všech zde uvedených vzorcích tónovaných bledě zelené.</td>
<td></td>
</tr>
</tbody>
</table>

\[m_{D1;1-c} = \frac{2t}{\chi_{\alpha}^2(2r+2)} \]
\[m_{H1;1-c} = \frac{2t}{\chi_{1-\alpha}^2(2r)} \]
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vzorce pro intervalové odhady použité pro odhad minimální doby t (resp. počtu zkušebních cyklů apod.)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pro odhad použijeme následující výchozí parametry</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>počet poruch r</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>konfidenční úroveň C</td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>úroveň významnosti α = 1 - C</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Prst</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>volnost</td>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CHIINV(Prst; volnost)</td>
<td>4,6052</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Dolní přípustná mez m_{D1,c}</td>
<td>100 000,00</td>
<td>100 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bodový odhad m_{PE}</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Nutná min. délka zkoušky t_{D1,c}</td>
<td>230 268,51</td>
<td>230 260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Počet poruch r</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Prst</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>volnost</td>
<td>4,00</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>CHIINV(Prst; volnost)</td>
<td>7,7794</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Dolní přípustná mez m_{D1,c}</td>
<td>100 000,00</td>
<td>100 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Bodový odhad m_{PE}</td>
<td>388 972,02</td>
<td>389 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Nutná min. délka zkoušky t_{D1,c}</td>
<td>388 972,02</td>
<td>388 980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Ze vzorce vyplyvá, že početní, minimální doba pro zkoušení je závislá zejména na hodnotě přípustné dolní mezí m_{D1,c}, kterou musíme ověřit a na počtu vzniklých poruch r.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Pro potřebný odhad dolní mezí jednostranného intervalu MTBF_{D1,c} = m_{D1,c} vyjde ze vzorce /1/ na listu 1.</td>
<td></td>
</tr>
</tbody>
</table>

\[t_{D1,c} \geq \frac{m_{D1,c}}{\chi^2_{\alpha}}^{(2r + 2)/2} \]
ISBN 978-80-02-02104-9
Bez spolehlivosti není jakosti (sborník přednášek),
Kollektiv autorů, rok vydání: 2008, 1. vydání, druh vazby: brožovaná